Colony morphology variation of Burkholderia pseudomallei is associated with antigenic variation and O-polysaccharide modification.

نویسندگان

  • Chanthiwa Wikraiphat
  • Natnaree Saiprom
  • Sarunporn Tandhavanant
  • Christian Heiss
  • Parastoo Azadi
  • Gumphol Wongsuvan
  • Apichai Tuanyok
  • Matthew T G Holden
  • Mary N Burtnick
  • Paul J Brett
  • Sharon J Peacock
  • Narisara Chantratita
چکیده

Burkholderia pseudomallei is a CDC tier 1 select agent that causes melioidosis, a severe disease in humans and animals. Persistent infections are common, and there is currently no vaccine available. Lipopolysaccharide (LPS) is a potential vaccine candidate. B. pseudomallei expresses three serologically distinct LPS types. The predominant O-polysaccharide (OPS) is an unbranched heteropolymer with repeating d-glucose and 6-deoxy-l-talose residues in which the 6-deoxy-l-talose residues are variably replaced with O-acetyl and O-methyl modifications. We observed that primary clinical B. pseudomallei isolates with mucoid and nonmucoid colony morphologies from the same sample expressed different antigenic types distinguishable using an LPS-specific monoclonal antibody (MAb). MAb-reactive (nonmucoid) and nonreactive (mucoid) strains from the same patient exhibited identical LPS banding patterns by silver staining and indistinguishable genotypes. We hypothesized that LPS antigenic variation reflected modification of the OPS moieties. Mutagenesis of three genes involved in LPS synthesis was performed in B. pseudomallei K96243. Loss of MAb reactivity was observed in both wbiA (encoding a 2-O-acetyltransferase) and wbiD (putative methyl transferase) mutants. The structural characteristics of the OPS moieties from isogenic nonmucoid strain 4095a and mucoid strain 4095c were further investigated. Utilizing nuclear magnetic resonance (NMR) spectroscopy, we found that B. pseudomallei 4095a and 4095c OPS antigens exhibited substitution patterns that differed from the prototypic OPS structure. Specifically, 4095a lacked 4-O-acetylation, while 4095c lacked both 4-O-acetylation and 2-O-methylation. Our studies indicate that B. pseudomallei OPS undergoes antigenic variation and suggest that the 9D5 MAb recognizes a conformational epitope that is influenced by both O-acetyl and O-methyl substitution patterns.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genome-scale analysis of the genes that contribute to Burkholderia pseudomallei biofilm formation identifies a crucial exopolysaccharide biosynthesis gene cluster

Burkholderia pseudomallei, the causative agent of melioidosis, is an important public health threat due to limited therapeutic options for treatment. Efforts to improve therapeutics for B. pseudomallei infections are dependent on the need to understand the role of B. pseudomallei biofilm formation and its contribution to antibiotic tolerance and persistence as these are bacterial traits that pr...

متن کامل

Altered Proteome of Burkholderia pseudomallei Colony Variants Induced by Exposure to Human Lung Epithelial Cells

Burkholderia pseudomallei primary diagnostic cultures demonstrate colony morphology variation associated with expression of virulence and adaptation proteins. This study aims to examine the ability of B. pseudomallei colony variants (wild type [WT] and small colony variant [SCV]) to survive and replicate intracellularly in A549 cells and to identify the alterations in the protein expression of ...

متن کامل

Characterization of the capsular polysaccharide of Burkholderia (Pseudomonas) pseudomallei 304b.

Burkholderia (Pseudomonas) pseudomallei is the causative agent of melioidosis, a bacterial infection of considerable morbidity in areas of endemicity of Southeast Asia and northern Australia. Clinical isolates of B. pseudomallei have been demonstrated to produce a lipopolysaccharide (LPS) containing two separate and chemically distinct antigenic O polysaccharides against which infected patients...

متن کامل

Sequence Determination of Burkholderia pseudomallei Strain NCTC 13392 Colony Morphology Variants

Burkholderia pseudomallei is a biothreat and the causative agent of melioidosis. There are at least seven known colony morphotypes of B. pseudomallei that appear to have different virulence properties in animal models. We report the genome sequence of B. pseudomallei strain NCTC 13392 and the genomic variations of its eight morphotype derivatives.

متن کامل

Enhanced intracellular survival and epithelial cell adherence abilities of Burkholderia pseudomallei morphotypes are dependent on differential expression of virulence-associated proteins during mid-logarithmic growth phase.

UNLABELLED Colony morphology variation is a characteristic of Burkholderia pseudomallei primary clinical isolates, associated with variations in expression of virulence factors. Here, we performed comparative investigations on adhesion, invasion, plaque-forming abilities and protein profiles of B. pseudomallei wild-type (WT) and a small colony variant (SCV). The percentage of SCV adherence to A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Infection and immunity

دوره 83 5  شماره 

صفحات  -

تاریخ انتشار 2015